Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Matthias Weil

Institut für Mineralogie, Kristallographie und Strukturchemie der Technischen Universität Wien, Getreidemarkt 9/171, A-1060 Vienna, Austria

Correspondence e-mail:
mweil@mail.zserv.tuwien.ac.at

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{As}-\mathrm{O})=0.001 \AA$
R factor $=0.018$
$w R$ factor $=0.042$
Data-to-parameter ratio $=20.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Cadmium(II) metaarsenate(V), $\mathrm{CdAs}_{2} \mathrm{O}_{6}$

$\mathrm{CdAs}_{2} \mathrm{O}_{6}$ is isotypic with other metaarsenates $\mathrm{MAs}_{2} \mathrm{O}_{6}(M=$ $\mathrm{Ca}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Hg}, \mathrm{Pb}$) and adopts the $\mathrm{PbSb}_{2} \mathrm{O}_{6}$ structure type. The Cd and As atoms are situated on positions with site symmetry $(\overline{3} m)$ and (32), respectively. They are coordinated octahedrally by O atoms with distances $d(\mathrm{Cd}-\mathrm{O})=$ $2.302(2) \AA$ and $d(\mathrm{As}-\mathrm{O})=1.826$ (1) \AA.

Comment

Like other metaarsenates $M^{\mathrm{II}} \mathrm{As}_{2} \mathrm{O}_{6}$ reported by Magnéli (1941) [structure refinements: $M=\mathrm{Ca}, \mathrm{Pb}$ (Losilla et al., 1995); $\mathrm{Mn}, \mathrm{Ni}, \mathrm{Co}$ (Nakua \& Greedan, 1995); Hg (Weil, 2000; Mormann \& Jeitschko, 2000], $\mathrm{CdAs}_{2} \mathrm{O}_{6}$ crystallizes in the $\mathrm{PbSb}_{2} \mathrm{O}_{6}$ structure type (Wells, 1984), which is based on a hexagonal array of O atoms. Layers of octahedral interstices alternate along the c axis of which two-thirds are filled by As atoms and one-third by M atoms. The AsO_{6} octahedra are connected by edge sharing to form honeycomb sheets with the composition $\left[\mathrm{As}_{2} \mathrm{O}_{6}\right]^{2-}$ (Fig. 1). The M atoms are situated below and above the vacant sites of the $\left[\mathrm{As}_{2} \mathrm{O}_{6}\right]^{2-}$ layers, which leads to isolated $M \mathrm{O}_{6}$ octahedra with site symmetry $(\overline{3} m)$ for the M atoms. The As atoms have site symmetry (32) (Fig. 2). The resulting distances of $d(\mathrm{Cd}-\mathrm{O})=2.302(2) \AA$ and $d(\mathrm{As}-\mathrm{O})=$ 1.826 (1) \AA compare well with $d(\mathrm{Cd}-\mathrm{O})=2.31 \AA$ and $d(\mathrm{As}-$ $\mathrm{O})=1.82 \AA$ calculated from the radii for six-coordinated Cd and As and three-coordinated O given by Shannon (1976).

Experimental

Single crystals of $\mathrm{CdAs}_{2} \mathrm{O}_{6}$ were prepared by chemical transport reaction of microcrystalline material in sealed and evacuated silica ampoules using PtCl_{2} as transport agent ($993 \mathrm{~K} \rightarrow 953 \mathrm{~K}, 14 \mathrm{~d}$). Microcrystalline $\mathrm{CdAs}_{2} \mathrm{O}_{6}$ was synthesized by solid-state reaction of the binary oxides in closed silica ampoules at 953 K for 5 d .

Crystal data

$\mathrm{As}_{2} \mathrm{CdO}_{6}$
$M_{r}=358.24$
Trigonal, $P \overline{3} 1 m$
$a=4.8269(10) \AA$
$c=4.8660(10) \AA$
$V=98.18(4) \AA^{3}$
$Z=1$
$D_{x}=6.059 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo $K \alpha$ radiation
> Cell parameters from 25 reflections
> $\theta=9.4-17.7^{\circ}$
> $\mu=22.22 \mathrm{~mm}^{-1}$
> $T=293(2) \mathrm{K}$
> Prismatic, brown
> $0.33 \times 0.31 \times 0.22 \mathrm{~mm}$

Data collection

Siemens-Stoe AED-2 diffract-

 ometer
$\omega / 2 \theta$ scans

Absorption correction: numerical
(HABITUS; Herrendorf, 1993);
see below
$T_{\text {min }}=0.019, T_{\text {max }}=0.129$
2446 measured reflections
240 independent reflections

Received 6 February 2001 Accepted 28 February 2001 Online 9 March 2001

Figure 1
Projection of the structure along [001] (left) and [100] (right). CdO_{6} octahedra are red and AsO_{6} octahedra are yellow.

Figure 2
The unit cell with anisotropic displacement ellipsoids at the 90% probability level; Cd atoms are red and As atoms are yellow.

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.042$
$S=1.23$
240 reflections
12 parameters

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0116 P)^{2}\right. \\
& \quad \quad+0.3303 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.88 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \text { SHELXL } 97 \\
& \text { Extinction coefficient: } 0.267 \text { (15) }
\end{aligned}
$$

Table 1
Selected geometric parameters (\AA).

$\mathrm{Cd} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.3019(17)$	$\mathrm{As} 1-\mathrm{O} 1^{\mathrm{ii}}$	$1.8256(11)$

Symmetry codes: (i) $x-y-1, x-1,-z$; (ii) $-y, x-y, z$.
The crystal shape was optimized by minimizing the internal R value of ψ scan data for ten selected reflections using the program HABITUS (Herrendorf, 1993). The habit so derived was used for the numerical absorption correction.

Data collection: STADI4 (Stoe \& Cie, 1995); cell refinement: STADI4; data reduction: STADI4; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: SHELXL97.

References

Dowty E. (1995). ATOMS for Windows. Version 3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Herrendorf, W. (1993). HABITUS. University of Karlsruhe, Germany.
Losilla, E. R., Aranda, M. A. G., Ramirez, F. J. \& Bruque, S. (1995). J. Phys. Chem. 99, 12975-12979.
Magnéli, A. (1941). Ark. Kemi. Min. Geol. Ser. B, 15, Pt 3, 1-6.
Mormann, T. J. \& Jeitschko, W. (2000). Z. Kristallogr. New Cryst. Struct. CIF reference number: 409488; URL: http://www.oldenbourg.de/verlag/zkristallogr/
Nakua, A. M. \& Greedan, J. E. (1995). J. Solid State Chem. 118, 402-411.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1995). STADI4. Version 1.04. Stoe \& Cie, Darmstadt, Germany.
Weil, M. (2000). Z. Naturforsch. Teil B, 55, 699-706.
Wells, A. T. (1984). Structural Inorganic Chemistry, 5th ed. Oxford: Clarendon Press.

