inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Matthias Weil

Institut für Mineralogie, Kristallographie und Strukturchemie der Technischen Universität Wien, Getreidemarkt 9/171, A-1060 Vienna, Austria

Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (As–O) = 0.001 Å R factor = 0.018 wR factor = 0.042 Data-to-parameter ratio = 20.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Cadmium(II) metaarsenate(V), CdAs₂O₆

CdAs₂O₆ is isotypic with other metaarsenates MAs_2O_6 (M = Ca, Mn, Ni, Co, Hg, Pb) and adopts the PbSb₂O₆ structure type. The Cd and As atoms are situated on positions with site symmetry ($\overline{3}m$) and (32), respectively. They are coordinated octahedrally by O atoms with distances d(Cd-O) = 2.302 (2) Å and d(As-O) = 1.826 (1) Å.

Comment

Like other metaarsenates $M^{II}As_2O_6$ reported by Magnéli (1941) [structure refinements: M = Ca, Pb (Losilla *et al.*, 1995); Mn, Ni, Co (Nakua & Greedan, 1995); Hg (Weil, 2000; Mormann & Jeitschko, 2000], CdAs₂O₆ crystallizes in the PbSb₂O₆ structure type (Wells, 1984), which is based on a hexagonal array of O atoms. Layers of octahedral interstices alternate along the c axis of which two-thirds are filled by As atoms and one-third by M atoms. The AsO₆ octahedra are connected by edge sharing to form honeycomb sheets with the composition $[As_2O_6]^{2-}$ (Fig. 1). The *M* atoms are situated below and above the vacant sites of the $[As_2O_6]^{2-}$ layers, which leads to isolated MO_6 octahedra with site symmetry ($\overline{3}m$) for the M atoms. The As atoms have site symmetry (32) (Fig. 2). The resulting distances of d(Cd-O) = 2.302(2) Å and d(As-O) =1.826 (1) Å compare well with d(Cd-O) = 2.31 Å and d(As-O) = 1.82 Å calculated from the radii for six-coordinated Cd and As and three-coordinated O given by Shannon (1976).

Experimental

. .

Single crystals of CdAs₂O₆ were prepared by chemical transport reaction of microcrystalline material in sealed and evacuated silica ampoules using PtCl₂ as transport agent (993 K \rightarrow 953 K, 14 d). Microcrystalline CdAs₂O₆ was synthesized by solid-state reaction of the binary oxides in closed silica ampoules at 953 K for 5 d.

Crystal data		
As ₂ CdO ₆	Mo $K\alpha$ radiation	
$M_r = 358.24$	Cell parameters from 25	
Trigonal, $P\overline{3}1m$	reflections	
a = 4.8269 (10) Å	$\theta = 9.4 17.7^{\circ}$	
c = 4.8660 (10) Å	$\mu = 22.22 \text{ mm}^{-1}$	
$V = 98.18 (4) \text{ Å}^3$	T = 293 (2) K	
Z = 1	Prismatic, brown	
$D_x = 6.059 \text{ Mg m}^{-3}$	$0.33 \times 0.31 \times 0.22 \text{ mm}$	
Data collection		
Siemens-Stoe AED-2 diffract-	240 reflections with $I > 2\sigma(I)$	
ometer	$R_{\rm int} = 0.046$	
$\omega/2\theta$ scans	$\theta_{\rm max} = 40.0^{\circ}$	
Absorption correction: numerical	$h = -8 \rightarrow 8$	
(HABITUS; Herrendorf, 1993);	$k = -8 \rightarrow 8$	
see below	$l = -8 \rightarrow 8$	
$T_{\min} = 0.019, \ T_{\max} = 0.129$	3 standard reflections	
2446 measured reflections	frequency: 120 min	
240 independent reflections	intensity decay: none	

Received 6 February 2001 Accepted 28 February 2001 Online 9 March 2001

i22 Matthias Weil • As₂CdO₆

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1 Projection of the structure along [001] (left) and [100] (right). CdO₆ octahedra are red and AsO₆ octahedra are yellow.

Figure 2

The unit cell with anisotropic displacement ellipsoids at the 90% probability level; Cd atoms are red and As atoms are yellow.

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.042$ S = 1.23240 reflections 12 parameters
$$\begin{split} & w = 1/[\sigma^2(F_o^2) + (0.0116P)^2 \\ & + 0.3303P] \\ & \text{where } P = (F_o^2 + 2F_c^2)/3 \\ & (\Delta/\sigma)_{\text{max}} < 0.001 \\ & \Delta\rho_{\text{max}} = 1.27 \text{ e } \text{ Å}^{-3} \\ & \Delta\rho_{\text{min}} = -0.88 \text{ e } \text{ Å}^{-3} \\ & \text{Extinction correction: } SHELXL97 \\ & \text{Extinction coefficient: } 0.267 (15) \end{split}$$

Table 1

Selected geometric parameters (Å).

Cd1-O1 ⁱ	2.3019 (17)	As1-O1 ⁱⁱ	1.8256 (11)
Symmetry codes: (i) $x - y - 1, x - 1, -z$; (ii) $-y, x - y, z$.			

The crystal shape was optimized by minimizing the internal R value of ψ scan data for ten selected reflections using the program *HABITUS* (Herrendorf, 1993). The habit so derived was used for the numerical absorption correction.

Data collection: *STADI*4 (Stoe & Cie, 1995); cell refinement: *STADI*4; data reduction: *STADI*4; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 1995); software used to prepare material for publication: *SHELXL*97.

References

- Dowty E. (1995). *ATOMS for Windows*. Version 3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Herrendorf, W. (1993). HABITUS. University of Karlsruhe, Germany.
- Losilla, E. R., Aranda, M. A. G., Ramirez, F. J. & Bruque, S. (1995). J. Phys. Chem. 99, 12975–12979.
- Magnéli, A. (1941). Ark. Kemi. Min. Geol. Ser. B, 15, Pt 3, 1-6.
- Mormann, T. J. & Jeitschko, W. (2000). Z. Kristallogr. New Cryst. Struct. CIF reference number: 409488; URL: http://www.oldenbourg.de/verlag/zkristallogr/

Nakua, A. M. & Greedan, J. E. (1995). J. Solid State Chem. 118, 402-411.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.

- Sheldrick G. M. (1997). *SHELXS*97 and *SHELXL*97. University of Göttingen, Germany.
- Stoe & Cie (1995). STADI4. Version 1.04. Stoe & Cie, Darmstadt, Germany. Weil, M. (2000). Z. Naturforsch. Teil B, 55, 699–706.
- Wells, A. T. (1984). *Structural Inorganic Chemistry*, 5th ed. Oxford: Clarendon Press.